
1 

Experimental Mathematics, Multicore Processors 
and Highly Parallel Computing 

David H Bailey 
Lawrence Berkeley National Laboratory 
http://crd.lbl.gov/~dhbailey 



2 

Petascale-Multicore Systems:  
Which Applications Will Run Well? 

Likely to run well on petascale systems with multicore processors: 
  Applications with enormous natural concurrency: ~108-way concurrency 

at every significant step of the computation. 
  Applications with mostly local data access: inner kernels have substantial 

computation on relatively little data. 
  Applications with two natural levels of parallelism: distributed at high level, 

shared memory at low level. 

Other classes of applications are not likely to run at optimal rates. 

Major challenges for the foreseeable future: 
  Finding (and exploiting) huge levels of concurrency in applications.  
  Minimizing communication, via improved algorithms and software. 
  Tuning local-node code for multicore processors. 



3 

Sparse Matrix Test Suite  
for Multicore Tuning 

Dense"

Protein" FEM /"
Spheres"

FEM /"
Cantilever"

Wind"
Tunnel"

FEM /"
Harbor" QCD" FEM /"

Ship" Economics" Epidemiology"

FEM /"
Accelerator" Circuit" webbase"

LP"

2K x 2K Dense matrix"
stored in sparse format"

Well Structured"
(sorted by nonzeros/row)"

Poorly Structured"
hodgepodge"

Extreme Aspect Ratio"
(linear programming)"

In the next few slides, performance results on this suite will be shown for 
various multicore systems, using various prototype semi-automatic tuning 
schemes.  For full details, see this paper: 

Samuel Williams, Kaushik Datta, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, DHB, “PERI: 
Auto-tuning Memory Intensive Kernels for Multicore,” Journal of Physics: Conference Series, vol. 125 (2008), 
pg. 012038; available at: http://crd.lbl.gov/~dhbailey/dhbpapers/scidac08_peri.pdf 



4 

Four Multi-Core SMP Systems 

4MB"
Shared L2"

Core2"

FSB"

Fully Buffered DRAM"

10.6GB/s"

Core2"

Blackford Chipset"

10.6GB/s"

      10.6 GB/s(write)"

4MB"
Shared L2"

Core2"Core2"

4MB"
Shared L2"

Core2"

FSB"

Core2"

4MB"
Shared L2"

Core2"Core2"

21.3 GB/s(read)"

Intel Clovertown"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

DDR2 DRAM" DDR2 DRAM"

10.6GB/s" 10.6GB/s"

8GB/s"

AMD Opteron"
C

ro
ss

ba
r S

w
itc

h"

Fully Buffered DRAM"

4M
B 

Sh
ar

ed
 L

2 
(1

6 
w

ay
)"

42.7GB/s (read), 21.3 GB/s (write)"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

17
9 

G
B/

s"
(fi

ll)
"

90
 G

B/
s"

(w
rit

et
hr

u)
"

Sun Niagara2"

4 FBDIMM memory controllers"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

<<20GB/s"
each"

direction"

SPE"256K"

PPE"512K L2"

MFC"

BIF"

XDR"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

SPE" 256K"

PPE" 512K L2"

MFC"

BIF"

XDR"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

IBM Cell Blade"



5 

Four Multi-Core SMP Systems 

4MB"
Shared L2"

Core2"

FSB"

Fully Buffered DRAM"

10.6GB/s"

Core2"

Blackford Chipset"

10.6GB/s"

      10.6 GB/s(write)"

4MB"
Shared L2"

Core2"Core2"

4MB"
Shared L2"

Core2"

FSB"

Core2"

4MB"
Shared L2"

Core2"Core2"

21.3 GB/s(read)"

Intel Clovertown"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

DDR2 DRAM" DDR2 DRAM"

10.6GB/s" 10.6GB/s"

8GB/s"

AMD Opteron"
C

ro
ss

ba
r S

w
itc

h"

Fully Buffered DRAM"

4M
B 

Sh
ar

ed
 L

2 
(1

6 
w

ay
)"

42.7GB/s (read), 21.3 GB/s (write)"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

17
9 

G
B/

s"
(fi

ll)
"

90
 G

B/
s"

(w
rit

et
hr

u)
"

Sun Niagara2"

4 FBDIMM memory controllers"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

<<20GB/s"
each"

direction"

SPE"256K"

PPE"512K L2"

MFC"

BIF"

XDR"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

SPE" 256K"

PPE" 512K L2"

MFC"

BIF"

XDR"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

IBM Cell Blade"



6 

Four Multi-Core SMP Systems 

4MB"
Shared L2"

Core2"

FSB"

Fully Buffered DRAM"

10.6GB/s"

Core2"

Blackford Chipset"

10.6GB/s"

      10.6 GB/s(write)"

4MB"
Shared L2"

Core2"Core2"

4MB"
Shared L2"

Core2"

FSB"

Core2"

4MB"
Shared L2"

Core2"Core2"

21.3 GB/s(read)"

Intel Clovertown"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

DDR2 DRAM" DDR2 DRAM"

10.6GB/s" 10.6GB/s"

8GB/s"

AMD Opteron"
C

ro
ss

ba
r S

w
itc

h"

Fully Buffered DRAM"

4M
B 

Sh
ar

ed
 L

2 
(1

6 
w

ay
)"

42.7GB/s (read), 21.3 GB/s (write)"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

17
9 

G
B/

s"
(fi

ll)
"

90
 G

B/
s"

(w
rit

et
hr

u)
"

Sun Niagara2"

4 FBDIMM memory controllers"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

<<20GB/s"
each"

direction"

SPE"256K"

PPE"512K L2"

MFC"

BIF"

XDR"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

SPE" 256K"

PPE" 512K L2"

MFC"

BIF"

XDR"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

IBM Cell Blade"



7 

Four Multi-Core SMP Systems 

4MB"
Shared L2"

Core2"

FSB"

Fully Buffered DRAM"

10.6GB/s"

Core2"

Blackford Chipset"

10.6GB/s"

      10.6 GB/s(write)"

4MB"
Shared L2"

Core2"Core2"

4MB"
Shared L2"

Core2"

FSB"

Core2"

4MB"
Shared L2"

Core2"Core2"

21.3 GB/s(read)"

Intel Clovertown"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

DDR2 DRAM" DDR2 DRAM"

10.6GB/s" 10.6GB/s"

8GB/s"

AMD Opteron"
C

ro
ss

ba
r S

w
itc

h"

Fully Buffered DRAM"

4M
B 

Sh
ar

ed
 L

2 
(1

6 
w

ay
)"

42.7GB/s (read), 21.3 GB/s (write)"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

17
9 

G
B/

s"
(fi

ll)
"

90
 G

B/
s"

(w
rit

et
hr

u)
"

Sun Niagara2"

4 FBDIMM memory controllers"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

<<20GB/s"
each"

direction"

SPE"256K"

PPE"512K L2"

MFC"

BIF"

XDR"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

SPE" 256K"

PPE" 512K L2"

MFC"

BIF"

XDR"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

IBM Cell Blade"



8 

Four Multi-Core SMP Systems 

4MB"
Shared L2"

Core2"

FSB"

Fully Buffered DRAM"

10.6GB/s"

Core2"

Blackford Chipset"

10.6GB/s"

      10.6 GB/s(write)"

4MB"
Shared L2"

Core2"Core2"

4MB"
Shared L2"

Core2"

FSB"

Core2"

4MB"
Shared L2"

Core2"Core2"

21.3 GB/s(read)"

Intel Clovertown"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

1MB"
victim"

Opteron"

1MB"
victim"

Opteron"

Memory Controller / HT"

DDR2 DRAM" DDR2 DRAM"

10.6GB/s" 10.6GB/s"

8GB/s"

AMD Opteron"
C

ro
ss

ba
r S

w
itc

h"

Fully Buffered DRAM"

4M
B 

Sh
ar

ed
 L

2 
(1

6 
w

ay
)"

42.7GB/s (read), 21.3 GB/s (write)"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

8K D$"MT UltraSparc"FPU"

17
9 

G
B/

s"
(fi

ll)
"

90
 G

B/
s"

(w
rit

et
hr

u)
"

Sun Niagara2"

4 FBDIMM memory controllers"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

<<20GB/s"
each"

direction"

SPE"256K"

PPE"512K L2"

MFC"

BIF"

XDR"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

SPE"256K"MFC"

XDR DRAM"

25.6GB/s"

EIB (R
ing N

etw
ork)"

SPE" 256K"

PPE" 512K L2"

MFC"

BIF"

XDR"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

SPE" 256K" MFC"

IBM Cell Blade"

Hardware makes!
programming easy(?)!



9 

Naive Single Thread Performance 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

Naive Single Thread"



10 

Naive Parallel Performance 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

Naive all sockets, cores, threads"

Naive Single Thread"



11 

Exploiting NUMA / Affinity 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

+NUMA/Affinity"

Naive all sockets, cores, threads"

Naive Single Thread"



12 

Exploiting Software Prefetch 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

+Software Prefetching"

+NUMA/Affinity"

Naive all sockets, cores, threads"

Naive Single Thread"



13 

Exploiting Memory Traffic Minimization 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

+Memory Traffic Minimization"

+Software Prefetching"

+NUMA/Affinity"

Naive all sockets, cores, threads"

Naive Single Thread"



14 

Exploiting Cache Blocking 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

+Cache/TLB Blocking"

+Memory Traffic Minimization"

+Software Prefetching"

+NUMA/Affinity"

Naive all sockets, cores, threads"

Naive Single Thread"



15 

Exploiting More DIMMs/Ranks 

Intel Clovertown" AMD Opteron"

Sun Niagara2"

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s

+More DIMMs, Rank configuration, etc…"

+Cache/TLB Blocking"

+Memory Traffic Minimization"

+Software Prefetching"

+NUMA/Affinity"

Naïve all sockets, cores, threads"

Naïve Single Thread"

IBM Cell Blade"

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

D
e
n
s
e

P
r
o
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
c
o
n
o
m

E
p
id
e
m

F
E
M
-A
c
c
e
l

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

M
e
d
ia
n

G
F
lo
p
/
s



16 

Conclusions of Auto-Tuning Study  

  Naive implementations of sparse matrix-vector calculations on current 
multicore systems exhibit poor to mediocre performance, even with state-of-
the-art compilers. 

  Several types of code modifications, which can be done semi-automatically, 
substantially improve performance. 

  Some changes require sophisticated search strategies and test runs. 
  Optimal code alterations are different for each architecture. 

Development of effective, broad-spectrum semi-automatic tuning techniques is 
a major research priority for the next 5-10 years. 

  Semi-automatic tuning is a key component of the SciDAC Performance 
Engineering Research Institute (PERI). 

In the meantime, performance for many applications on multicore processors 
will be decidedly suboptimal. 



17 

On the Bright Side:  
Some Applications Will Do Quite Well 

  “Embarrassingly parallel” applications – e.g., running a large ensembles 
of individual instances of an application with different parameters. 

  Applications that spawn independent tasks and combine results at the 
end, e.g., the “MapReduce” class in the Berkeley “dwarf” kernels. 

  Computations that utilize highly tuned cache-aware libraries, such as 
LAPACK and ScaLAPACK, and FFTW. 

  Applications employing high-precision arithmetic – double-double (32 
digits), quad-double (64 digits), or arbitrary precision arithmetic. 
  These calculations enjoy very favorable data locality, and parallelization of 

the higher-level application is generally straightforward. 



18 

Applications of High-Precision Arithmetic 
in Modern Scientific Computing 

  Highly nonlinear computations. 
  Computations involving highly ill-conditioned linear systems. 
  Computations involving data with very large dynamic range. 
  Large computations on highly parallel computer systems. 
  Computations where numerical sensitivity is not currently a major 

problem, but periodic testing is needed to ensure that results are reliable. 
  Research problems in mathematics and mathematical physics that 

involve constant recognition and integer relation detection. 

Few physicists, chemists or engineers are highly expert in numerical 
analysis.  Thus high-precision arithmetic is often a better remedy for 
severe numerical round-off error, even if the error could, in principle, be 
improved with more advanced algorithms or coding techniques. 



19 

Available High-Precision Facilities 

Vendor-supported arithmetic: 
   Total  Significant 

Type   Bits  Digits  Support 
IEEE Double  64  16  In hardware on almost all systems. 
IEEE Extended  80  18  In hardware on Intel and AMD systems. 
IEEE Quad  128  33  In software from some vendors (50-100X 

      slower than IEEE double). 

Non-commercial (free) software: 
   Total  Significant 

Type   Bits  Digits  Support 
Double-double  128  32  DDFUN90, QD. 
Quad-double  256  64  QD. 
Arbitrary  Any  Any  ARPREC, MPFUN90, GMP, MPFR. 

Commercial software:  Mathematica, Maple. 



20 

LBNL’s High-Precision Software 

  QD:  double-double (31 digits) and quad-double (62 digits).  
  ARPREC:  arbitrary precision. 
  Low-level routines written in C++. 
  C++ and Fortran-90 translation modules permit use with existing C++ and 

Fortran-90 programs -- only minor code changes are required. 
  Includes many common functions:  sqrt, cos, exp, gamma, etc. 
  PSLQ, root finding, numerical integration. 

Available at:  http://www.experimentalmath.info 

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB 



21 

Some Real-World Applications of High-
Precision Arithmetic 

  Supernova simulations (32 or 64 digits). 
  Climate modeling (32 digits). 
  Planetary orbit calculations (32 digits). 
  Coulomb n-body atomic system simulations (32-120 digits). 
  Schrodinger solutions for lithium and helium atoms (32 digits). 
  Electromagnetic scattering theory (32-100 digits). 
  Studies of the fine structure constant of physics (32 digits). 
  Scattering amplitudes of quarks, gluons and bosons (32 digits). 
  Theory of nonlinear oscillators (64 digits). 



22 

Planetary Orbit Calculations 

  A key question of planetary theory is whether 
the solar system is stable over cosmological 
time frames (billions of years). 

  Scientists have studied this question by 
performing very long-term simulations of 
planetary motions. 

  This problem is well known to exhibit chaos. 
  Simulations typically do well for long periods 

of time, but then fail at certain key junctures, 
unless special measures are taken. 

  Researchers have found that double-double 
or quad-double arithmetic is required to avoid 
severe numerical inaccuracies, even if other 
techniques are employed. 

“The orbit of any one planet 
depends on the combined 
motions of all the planets, not 
to mention the actions of all 
these on each other. To 
consider simultaneously all 
these causes of motion and to 
define these motions by exact 
laws allowing of convenient 
calculation exceeds, unless I 
am mistaken, the forces of the 
entire human intellect.” [Isaac 
Newton, 1687]"

G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey: Calculating the structure and 
chaos due to gravity in the universe,” Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete 
Algorithms, SIAM, Philadelphia, 1997, pg. 1-10. 



23 

High-Precision Arithmetic and 
Experimental Mathematics 

“Experimental” methodology: 
  Compute various mathematical entities (limits, infinite series sums, 

definite integrals) to high precision. 
  Use algorithms such as PSLQ to recognize these entities in terms of well-

known mathematical constants. 
  Use this same process to discover relations between entities. 
  When results are found experimentally, seek to find formal mathematical 

proofs of the discovered relations. 
  Many results have been found using this methodology, both in pure math 

and in mathematical physics. 

1.  J. M. Borwein and DHB, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A.K. 
Peters, 2004.  Second edition 2008. 

2.  J. M. Borwein, DHB and R. Girgensohn, Experimentation in Mathematics: Computational Paths to 
Discovery, A.K. Peters, 2004. 

3.  DHB, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke, V. Moll, Experimental Mathematics in Action, 
A.K. Peters, 2007. 

4.  J. M. Borwein and K. Devlin, The Computer as Crucible: An Introduction to Experimental Mathematics, 
A.K. Peters, 2007. 



24 

The PSLQ Integer Relation Algorithm 

Let (xn) be a given vector of real numbers.  An integer relation algorithm 
finds integers (an) such that  

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).  

At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm, 
although the “LLL” algorithm is also used.  PSLQ was named one of ten 
“algorithms of the century” by Computing in Science and Engineering. 

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, an integer relation finding algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications,” Mathematics 
of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

a1x1 + a2x2 + · · · + anxn = 0



25 

PSLQ, Continued 

  PSLQ constructs a sequence of integer-valued matrices Bn that reduces 
the vector y = x Bn, until either the relation is found (as one of the columns 
of Bn), or else precision is exhausted. 

  At the same time, PSLQ generates a steadily growing bound on the size 
of any possible relation. 

  When a relation is found, the size of smallest entry of the vector y abruptly 
drops to roughly “epsilon” (i.e. 10-p, where p is the number of digits of 
precision). 

  The size of this drop can be viewed as a “confidence level” that the 
relation is real and not merely a numerical artifact -- a drop of 20+ orders 
of magnitude almost always indicates a real relation. 

  PSLQ (or any other integer relation scheme) requires very high precision 
arithmetic (at least nd digits, where d is the size in digits of the largest ak), 
both in the input data and in the operation of the algorithm. 



26 

Decrease of log10(mink |yk|) as a Function 
of Iteration Number in a Typical PSLQ Run 



27 

Methodology for Using PSLQ to 
Recognize An Unknown Constant α	


  Calculate α to high precision – typically 100 - 1000 digits.  This is often the 
most computationally expensive part of the entire process. 

  Based on experience with similar constants or relations, make a list of 
possible terms on the right-hand side (RHS) of a linear formula for α, then 
calculate each of the n RHS terms to the same precision as α. 

  If you suspect α is algebraic of degree n (the root of a degree-n polynomial 
with integer coefficients), compute the vector (1, α, α2, α3, …, αn). 

  Apply PSLQ to the (n+1)-long vector, using the same numeric precision as 
α, but with a detection threshold a few orders of magnitude larger than 
“epsilon”– e.g., 10-480 instead of 10-500 for 500-digit arithmetic. 

  When PSLQ runs, look for a detection following a drop in the size of the 
reduced y vector by at least 20 orders of magnitude, to value near epsilon. 

  If no credible relation is found, try expanding the list of RHS terms. 
  Another possibility is to search for multiplicative relations (i.e., monomial 

expressions), which can be done by taking logarithms of α and constants. 



28 

Bifurcation Points in Chaos Theory 

exhibits 8-way periodicity instead 
of 4-way periodicity.    

By means of a sequential 
approximation scheme, one can 
obtain the numerical value of t to 
any desired precision: 

Let t = B3 = the smallest r such 
that the “logistic iteration” 

3.544090359551922853615965986604804540583099845444573675457812
5303058429428588630122562585664248917999626… 

Applying PSLQ to (1, t, t2, t3, …, t12), we obtained the result that t is a root of: 

xn+1 = rxn(1− xn)

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7

−193t8 − 40t9 + 48t10 − 12t11 + t12



29 

The BBP Formula for Pi 

In 1996, at the suggestion of Peter Borwein, Simon Plouffe used DHB’s 
PSLQ program and arbitrary precision software to discover this new 
formula for π: 

This formula permits one to compute binary (or hexadecimal) digits of π 
beginning at an arbitrary starting position, using a very simple scheme 
that can run on any system with standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-n formulas of this type exist for π, 
except n = 2m. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,” 
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 

π =
∞�

k=0

1
16k

�
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

�



30 

Some Other New BBP-Type Formulas 
Discovered Using PSLQ 

π2 =
1
8

∞�

k=0

1
64k

�
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9
(6k + 5)2

�

π2 =
2
27

∞�

k=0

1
729k

�
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(27k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

�

ζ(3) =
1

1792

∞�

k=0

1
212k

�
6144

(24k + 1)3
− 43008

(24k + 2)3
+

24576
(24k + 3)3

+
30720

(24k + 4)3

− 1536
(24k + 5)3

+
3072

(24k + 6)3
+

768
(24k + 7)3

− 3072
(24k + 9)3

− 2688
(24k + 10)3

− 192
(24k + 11)3

− 1536
(24k + 12)3

− 96
(24k + 13)3

− 672
(24k + 14)3

− 384
(24k + 15)3

+
24

(24k + 17)3
+

48
(24k + 18)3

− 12
(24k + 19)3

+
120

(24k + 20)3
+

48
(24k + 21)3

− 42
(24k + 22)3

+
3

(24k + 23)3

�

DHB, “A compendium of BBP-type formulas,” at http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. 



31 

A Connection Between BBP Formulas 
and Normality 

Consider the “chaotic’” sequence defined by x0 = 0, and 

where { } denotes fractional part as before.  By “2-normal” we mean that 
every m-long binary digit string appears, in the limit, with frequency 2-m. 

Result: log(2) is 2-normal if and only if this sequence is equidistributed 
in the unit interval. 

In a similar vein, consider the sequence x0 = 0, and 

Result:  π is 16-normal if and only if this sequence is equidistributed in 
the unit interval. 
David H. Bailey and Richard E. Crandall, “On the Random Character of Fundamental Constant 
Expansions,” Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190. 

xn =
�

2xn−1 +
1
n

�

xn =
�

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

�



32 

A Class of Provably Normal Constants 

Crandall and I have also shown (unconditionally) that an infinite class of 
mathematical constants is normal, including 

α2,3 was proven 2-normal by Stoneham in 1971, but we have extended 
this to the case where (2,3) are any pair (p,q) of relatively prime integers.  
We also extended this result to an uncountably infinite class, as follows 
[here rn is the n-th bit of a real number r in (0,1)]: 

David H. Bailey and Richard E. Crandall, “Random Generators and Normal Numbers,” Experimental 
Mathematics, vol. 11, no. 4 (2002), pg. 527-546. "
David H. Bailey and Michal Misiurewicz, “A Strong Hot Spot Theorem,” Proceedings of the American 
Mathematical Society, vol. 134 (2006), no. 9, pg. 2495-2501."

α2,3 =
∞�

n=0

1
n23n

= 0.54188368083150298507125289862457168242609610

= 0.8ab8e38f684bda12f684bf35ba781948b0fcd6e9e016

α2,3(r) =
∞�

n=0

1
3n23n+rn



33 

A Class of Provably Normal Constants 

Crandall and I have also shown (unconditionally) that an infinite class of 
mathematical constants is normal, including 

α2,3 was proven 2-normal by Stoneham in 1971, but we have extended 
this to the case where (2,3) are any pair (p,q) of relatively prime integers.  
We also extended this result to an uncountably infinite class, as follows 
[here rn is the n-th bit of a real number r in (0,1)]: 

David H. Bailey and Richard E. Crandall, “Random Generators and Normal Numbers,” Experimental 
Mathematics, vol. 11, no. 4 (2002), pg. 527-546. "
David H. Bailey and Michal Misiurewicz, “A Strong Hot Spot Theorem,” Proceedings of the American 
Mathematical Society, vol. 134 (2006), no. 9, pg. 2495-2501."

α2,3(r) =
∞�

n=0

1
3n23n+rn

α2,3 =
∞�

n=0

1
3n23n

= 0.54188368083150298507125289862457168242609610

= 0.8ab8e38f684bda12f684bf35ba781948b0fcd6e9e016



34 

History of Numerical Integration 
(Quadrature) 

  1670: Newton devises the Newton-Coates integration rule. 
  1740: Thomas Simpson develops Simpson’s rule. 
  1820: Gauss develops Gaussian quadrature. 
  1950-1970: Adaptive quadrature, Romberg integration, Clenshaw-Curtis 

integration, others. 
  1973: Takashi and Mori develop the tanh-sinh quadrature scheme. 
  1985-1990: Maple and Mathematica feature built-in numerical quadrature 

facilities. 
  2000: Very high-precision quadrature (1000+ digits) methods. 

With high-precision numerical values, we can now use PSLQ to obtain 
analytical evaluations of integrals. 



35 

The Euler-Maclaurin Formula of 
Numerical Analysis 

Here h = (b - a)/n and xj = a + jh; B2i are Bernoulli numbers; Dm f(x) is the  m-
th derivative of f(x). 
Note when f(x) and all of its derivatives are zero at the endpoints a and b (as 
in a bell-shaped curve), the error E(h) of a simple trapezoidal approximation 
to the integral goes to zero more rapidly than any power of h."

K. Atkinson, An Introduction to  Numerical Analysis, John Wiley, 1989, pg. 289."

� b

a
f(x) dx = h

n�

j=0

f(xj)−
h

2
(f(a) + f(b))

−
m�

i=1

h2iB2i

(2i)!
�
D2i−1f(b)−D2i−1f(a)

�
− E(h)

|E(h)| ≤ 2(b− 1)(h/(2π))2m+2 max
a≤x≤b

|D2m+2f(x)|



36 

Trapezoidal Approximation to a  
Bell-Shaped Function 



37 

Tanh-Sinh Quadrature 

Given f(x) defined on (-1,1), define g(t) = tanh (π/2 sinh t).  Then setting x 
= g(t) yields 

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for large 
t, the product  f(g(t)) g’(t)  typically is a nice bell-shaped function for which the 
Euler-Maclaurin formula implies that the simple summation above is 
remarkably accurate.  Reducing h by half typically doubles the number of 
correct digits. 

In our experience, we have found that tanh-sinh is the best general-purpose 
integration scheme for functions with vertical derivatives or singularities at 
endpoints.  It is also best at very high precision (> 1000 digits), because its 
computation of abscissas and weights is much faster than other schemes. 

1.  DHB, X.S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature schemes,” Experimental 
Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 
2.  H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publications of RIMS, 
Kyoto University, vol. 9 (1974), pg. 721–741. 

� 1

−1
f(x) dx =

� ∞

−∞
f(g(t))g�(t) dt ≈ h

N�

j=−N

wjf(xj),



38 

Original and Transformed Integrand 
Functions 

Original integrand function on [-1,1]: 

Note the singularities at the endpoints. 

Transformed using x = g(t) = tanh (sinh t): 

f(x) = − log cos
�πx

2

�

This is now a nice smooth bell-shaped 
function, so the E-M formula implies that a 
trapezoidal approximation is very accurate. 

f(g(t))g�(t) =

−cosh t · log cos(π/2 · tanh(sinh t))
cosh2(sinh t)



39 

A “Nice” Function That Requires Tanh-Sinh 

!"# !"$ !"% !"& '"!

'!

#!

(!

$!

)!

!"# !"$ !"% !"& '"!

!#!!!!

!'!!!!

'!!!!

#!!!!

Plots of 

(where zeta here denotes the Hurwitz zeta function), and its fourth 
derivative, for p = 3 (blue) and p = 3.5 (red). 

f(x) = sinp(πx)ζ(p, x)



40 

A Log-Tan Integral Identity 

This identity arises from analysis 
of volumes of knot complements in 
hyperbolic space.  This is simplest 
of 998 related identities. 

We verified this numerically to 
20,000 digits (using highly parallel 
tanh-sinh quadrature).  A proof is 
now known. 
DHB, J. M. Borwein, V. Kapoor and E. Weisstein, 
“Ten problems in experimental mathematics,” 
American Mathematical Monthly, vol. 113, no. 6 
(Jun 2006), pg. 481-409 . 

24
7
√

7

� π/2

π/3
log

�����
tan t +

√
7

tan t−
√

7

����� dt = L−7(2) =

∞�

n=0

�
1

(7n + 1)2
+

1
(7n + 2)2

− 1
(7n + 3)2

+
1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

�



41 

Computing High-Precision Values of 
Multi-Dimension Integrals 

Computing multi-hundred digit numerical values of 2-D, 3-D and higher-
dimensional integrals remains a major challenge. 

Typical approach: 
  Consider the 2-D or 3-D domain divided into 1-D lines. 
  Use Gaussian quadrature (for regular functions) or tanh-sinh quadrature 

(if function has vertical derivates or singularities on boundaries) on each 
of the 1-D lines. 

  Discontinue evaluation beyond points where it is clear that function-weight 
products are smaller than the “epsilon” of the precision level (this works 
better with tanh-sinh). 

Even with “smart” evaluation that avoids unnecessary evaluations, the 
computational cost increases very sharply with dimension: 

  If 1000 evaluation points are required in 1-D for a given precision, then 
typically 1,000,000 are required in 2-D and 1,000,000,000 in 3-D, etc. 



42 

Ising Integrals 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 

Cn :=
4
n!

� ∞

0
· · ·

� ∞

0

1
��n

j=1(uj + 1/uj)
�2

du1

u1
· · · dun

un

Dn :=
4
n!

� ∞

0
· · ·

� ∞

0

�
i<j

�
ui−uj

ui+uj

�2

��n
j=1(uj + 1/uj)

�2

du1

u1
· · · dun

un

En = 2
� 1

0
· · ·

� 1

0




�

1≤j<k≤n

uk − uj

uk + uj




2

dt2 dt3 · · · dtn



43 

Computing and Evaluating Cn 

where K0 is the modified Bessel function.  In this form, the Cn constants 
appear naturally in in quantum field theory (QFT).   

We used this formula to compute 1000-digit numerical values of various 
Cn, from which the following results and others were found, then proven: 

We observed that the multi-dimensional Cn integrals can be transformed 
to 1-D integrals: 

C1 = 2
C2 = 1

C3 = L−3(2) =
�

n≥0

�
1

(3n + 1)2
− 1

(3n + 2)2

�

C4 =
7
12

ζ(3)

Cn =
2n

n!

� ∞

0
tKn

0 (t) dt



44 

Limiting Value of Cn 

The Cn numerical values appear to approach a limit.  For instance, 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc 

The result was: 

where gamma denotes Euler’s constant.  Finding this limit led us to the 
asymptotic expansion and made it clear that the integral representation of 
Cn is fundamental. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n→∞

Cn = 2e−2γ



45 

Other Ising Integral Evaluations 

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where Lin(x) is the polylog function.  D2, D3 and D4 were originally provided 
to us by mathematical physicist Craig Tracy, who hoped that our tools could 
help identify D5. 



46 

The Ising Integral E5 

We were able to reduce E5, 
which is a 5-D integral, to an 
extremely complicated 3-D 
integral. 

We computed this integral to 
250-digit precision, using a 
highly parallel, high-precision 
3-D quadrature program.  
Then we used a PSLQ 
program to discover the 
evaluation given on the 
previous page. 

We also computed D5 to 500 
digits, but were unable to 
identify it.  The digits are 
available if anyone wishes to 
further explore this question. 

E5 =
� 1

0

� 1

0

� 1

0

�
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2

�
−

�
4(x + 1)(xy + 1) log(2)

�
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

��
y2 + 1

�
z2 + 4(y+

1)z + 5) x5 + y2
�
4y(y + 1)z3 + 3

�
y2 + 1

�
z2 + 4(y + 1)z − 1

�
x4 + y

�
z

�
z2 + 4z

+5) y2 + 4
�
z2 + 1

�
y + 5z + 4

�
x3 +

��
−3z2 − 4z + 1

�
y2 − 4zy + 1

�
x2 − (y(5z + 4)

+4)x− 1)] /
�
(x− 1)3(xy − 1)3(xyz − 1)3

�
+

�
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
�
3(z − 1)2z3y5 + z2

�
5z3 + 3z2 + 3z + 5

�
y4 + (z − 1)2z

�
5z2 + 16z + 5

�
y3 +

�
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

�
y2 + 3

�
−2z4 + z3 + 2

z2 + z − 2
�
y + 3z3 + 5z2 + 5z + 3

�
x5 + y2

�
7(z − 1)2z4y6 − 2z3

�
z3 + 15z2

+15z + 1) y5 + 2z2
�
−21z4 + 6z3 + 14z2 + 6z − 21

�
y4 − 2z

�
z5 − 6z4 − 27z3

−27z2 − 6z + 1
�
y3 +

�
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

�
y2 − 2

�
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
�
y + 7z4 − 2z3 − 42z2 − 2z + 7

�
x4 − 2y

�
z3

�
z3

−9z2 − 9z + 1
�
y6 + z2

�
7z4 − 14z3 − 18z2 − 14z + 7

�
y5 + z

�
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
�
y4 +

�
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

�
y3 − 3

�
3z5

+6z4 − z3 − z2 + 6z + 3
�
y2 −

�
9z4 + 14z3 − 14z2 + 14z + 9

�
y + z3 + 7z2 + 7z

+1)x3 +
�
z2

�
11z4 + 6z3 − 66z2 + 6z + 11

�
y6 + 2z

�
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
�
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

�
y4 +

�
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
�
y3 − 2

�
33z4 + 2z3 − 22z2 + 2z + 33

�
y2 +

�
6z3 + 26

z2 + 26z + 6
�
y + 11z2 + 10z + 11

�
x2 − 2

�
z2

�
5z3 + 3z2 + 3z + 5

�
y5 + z

�
22z4

+5z3 − 22z2 + 5z + 22
�
y4 +

�
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

�
y3 +

�
3z4−

22z3 − 26z2 − 22z + 3
�
y2 +

�
3z3 + 5z2 + 5z + 3

�
y + 5z2 + 22z + 5

�
x + 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
�
15z2 + 2z + 15

�
+ y2

�
15z4

−2z3 − 90z2 − 2z + 15
�

+ 15
�
/

�
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
�
−

�
4(x + 1)(y + 1)(yz + 1)

�
−z2y4 + 4z(z + 1)y3 +

�
z2 + 1

�
y2

−4(z + 1)y + 4x
�
y2 − 1

� �
y2z2 − 1

�
+ x2

�
z2y4 − 4z(z + 1)y3 −

�
z2 + 1

�
y2

+4(z + 1)y + 1)− 1) log(x + 1)] /
�
(x− 1)3x(y − 1)3(yz − 1)3

�
− [4(y + 1)(xy

+1)(z + 1)
�
x2

�
z2 − 4z − 1

�
y4 + 4x(x + 1)

�
z2 − 1

�
y3 −

�
x2 + 1

� �
z2 − 4z − 1

�

y2 − 4(x + 1)
�
z2 − 1

�
y + z2 − 4z − 1

�
log(xy + 1)

�
/

�
x(y − 1)3y(xy − 1)3(z−

1)3
�
−

�
4(z + 1)(yz + 1)

�
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

��
y2+

1) x2 − 4(y + 1)x− 3
�
z5 − y2

�
4y(y + 1)x3 + 5

�
y2 + 1

�
x2 + 4(y + 1)x + 1

�
z4+

y
�
y2x3 − 4y(y + 1)x2 − 3

�
y2 + 1

�
x− 4(y + 1)

�
z3 +

�
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z − 1
�
log(xyz + 1)

�
/

�
xy(z − 1)3z(yz − 1)3(xyz − 1)3

���

/
�
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

�
dx dy dz



47 

Recursions in Ising Integrals 

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k): 

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 
(performed on a highly parallel computer system), we discovered (using PSLQ) 
linear relations in the rows of this array.  For example, when n = 3: 

Similar, but more complicated, recursions have been found for all n. 
DHB, D. Borwein, J.M. Borwein and R.E. Crandall, “Hypergeometric forms for Ising-class integrals,” 
Experimental Mathematics, vol. 16 (2007), pg. 257-276.  

J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Experimental Mathematics, vol. 17 
(2008), pg. 223-230.   

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8

Cn,k =
4
n!

� ∞

0
· · ·

� ∞

0

1
��n

j=1(uj + 1/uj)
�k+1

du1

u1
· · · dun

un



48 

Four Hypergeometric Evaluations 

DHB, J.M. Borwein, D.M. Broadhurst and M.L. Glasser, “Elliptic integral representation of Bessel moments,” 
Journal of Physics A: Mathematical and Theoretical, vol. 41 (2008), 5203-5231."

c3,0 =
3Γ6(1/3)
32π22/3

=
√

3π3

8 3F2

�
1/2, 1/2, 1/2

1, 1

�����
1
4

�

c3,2 =
√

3π3

288 3F2

�
1/2, 1/2, 1/2

2, 2

�����
1
4

�

c4,0 =
π4

4

∞�

n=0

�2n
n

�4

44n
=

π4

4 4F3

�
1/2, 1/2, 1/2, 1/2

1, 1, 1

�����1
�

c4,2 =
π4

64

�
44F3

�
1/2, 1/2, 1/2, 1/2

1, 1, 1

�����1
�

−34F3

�
1/2, 1/2, 1/2, 1/2

2, 1, 1

�����1
��
− 3π2

16



49 

2-D Integral in Bessel Moment Study 

We conjectured (and later proved) 

Here K denotes the complete 
elliptic integral of the first kind 

Note that the integrand function 
has singularities on all four sides 
of the region of integration. 

We were able to evaluate this 
integral to 120-digit accuracy, 
using 1024 cores of the “Franklin” 
Cray XT4 system at LBNL. 

c5,0 =
π

2

� π/2

−π/2

� π/2

−π/2

K(sin θ)K(sinφ)�
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ



50 

Heisenberg Spin Integrals 

In another recent application of these methods, we investigated the following 
“spin integrals,” which arise from studies in mathematical physics: 

H. E. Boos, V. E. Korepin, Y. Nishiyama and M. Shiroishi, “Quantum correlations and number theory,” 
Journal of Physics A: Mathematical and General, vol. 35 (2002), pg. 4443.  

P (n) :=
πn(n+1)/2

(2πi)n
·
� ∞

−∞

� ∞

−∞
· · ·

� ∞

−∞
U(x1 − i/2, x2 − i/2, · · · , xn − i/2)

× T (x1 − i/2, x2 − i/2, · · · , xn − i/2) dx1dx2 · · · dxn

where

U(x1 − i/2, x2 − i/2, · · · , xn − i/2) =
�

1≤k<j≤n sinh[π(xj − xk)]
�

1≤j≤n in coshn(πxj)

T (x1 − i/2, x2 − i/2, · · · , xn − i/2) =
�

1≤j≤n(xj − i/2)j−1(xj + i/2)n−j

�
1≤k<j≤n(xj − xk − i)



51 

Evaluations of P(n) 
Derived Analytically, Confirmed Numerically 

P (1) =
1
2
, P (2) =

1
3
− 1

3
log 2, P (3) =

1
4
− log 2 +

3
8
ζ(3)

P (4) =
1
5
− 2 log 2 +

173
60

ζ(3)− 11
6

ζ(3) log 2− 51
80

ζ2(3)− 55
24

ζ(5) +
85
24

ζ(5) log 2

P (5) =
1
6
− 10

3
log 2 +

281
24

ζ(3)− 45
2

ζ(3) log 2− 489
16

ζ2(3)− 6775
192

ζ(5)

+
1225

6
ζ(5) log 2− 425

64
ζ(3)ζ(5)− 12125

256
ζ2(5) +

6223
256

ζ(7)

−11515
64

ζ(7) log 2 +
42777
512

ζ(3)ζ(7)

and a much more complicated expression for P(6).  Run times increase very 
rapidly with the dimension n: 

n Digits Processors Run Time
2 120 1 10 sec.
3 120 8 55 min.
4 60 64 27 min.
5 30 256 39 min.
6 6 256 59 hrs.



52 

Box Integrals 

The following integrals appear in numerous arenas of math and physics: 

Bn(s) :=
� 1

0
· · ·

� 1

0

�
r2
1 + · · · + r2

n

�s/2
dr1 · · · drn

∆n(s) :=
� 1

0
· · ·

� 1

0

�
(r1 − q1)2 + · · · + (rn − qn)2

�s/2
dr1 · · · drn dq1 · · · dqn

•  Bn(1) is the expected distance of a random point from the origin of n-cube. 
•  Δn(1) is the expected distance between two random points in n-cube. 
•  Bn(-n+2) is the expected electrostatic potential in an n-cube whose origin 
has a unit charge. 
•  Δn(-n+2) is the expected electrostatic energy between two points in a 
uniform n-cube of charged “jellium.” 
•  Recently integrals of this type have arisen in neuroscience – e.g., the 
average distance between synapses in a mouse brain. "

DHB, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics, 
vol. 206 (2007), pg. 196-208. 



53 

Recent Result (18 Jan 2009) 

∆3(−1) =
2√
π

� ∞

0

(−1 + e−u2
+
√

π u erf(u))3

u6
du

=
1
15

�
6 + 6

√
2− 12

√
3− 10π + 30 log(1 +

√
2) + 30 log(2 +

√
3)

�

As in many of the previous results, this was found by first computing the 
integral to high precision (250 to 1000 digits), conjecturing possible terms 
on the right-hand side, then applying PSLQ to look for a relation.  We now 
have proven this result. 

Dozens of similar results have since been found (see next few viewgraphs), 
raising hope that all box integrals eventually will be evaluated in closed 
form. 

DHB, J. M. Borwein and R. E. Crandall, “Advances in the theory of box integrals,” manuscript, Mar 2009, 
available at http://crd.lbl.gov/~dhbailey/dhbpapers/BoxII.pdf. 



54 

Recent Evaluations of Box Integrals 

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.  

n s Bn(s)
any even s ≥ 0 rational, e.g., : B2(2) = 2/3
1 s �= −1 1

s+1

2 -4 − 1
4 −

π
8

2 -3 −
√

2
2 -1 2 log(1 +

√
2)

2 1 1
3

√
2 + 1

3 log(1 +
√

2)
2 3 7

20

√
2 + 3

20 log(1 +
√

2)
2 s �= −2 2

2+s 2F1

�
1
2 ,− s

2 ; 3
2 ;−1

�

3 -5 − 1
6

√
3− 1

12π
3 -4 − 3

2

√
2 arctan 1√

2

3 -2 −3G + 3
2π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

3 -1 − 1
4π + 3

2 log
�
2 +

√
3
�

3 1 1
4

√
3− 1

24π + 1
2 log

�
2 +

√
3
�

3 3 2
5

√
3− 1

60π + 7
20 log

�
2 +

√
3
�



55 

Recent Evaluations of Box Integrals, 
Continued 

Here G is Catalan; Cl is Clausen function; Ti is Lewin function; and θ = arctan((16-3*sqrt(15))/11).  

n s Bn(s)
4 -5 −

√
8 arctan

�
1√
8

�

4 -3 4 G− 12 Ti2(3− 2
√

2)
4 -2 π log

�
2 +

√
3
�
− 2 G− π2

8

4 -1 2 log 3− 2
3 G + 2 Ti2

�
3− 2

√
2
�
−
√

8 arctan
�

1√
8

�

4 1 2
5 −

G
10 + 3

10 Ti2
�
3− 2

√
2
�

+ log 3− 7
√

2
10 arctan

�
1√
8

�

5 -3 110
9 G− 10 log

�
2−

√
3
�

θ − 1
8 π2 − 10 Cl2

�
1
3 θ + 1

3 π
�

+ 10 Cl2
�

1
3 θ − 1

6 π
�

+ 10
3 Cl2

�
θ + 1

6 π
�

+ 20
3 Cl2

�
θ + 4

3 π
�
− 10

3 Cl2
�
θ + 5

3 π
�
− 20

3 Cl2
�
θ + 11

6 π
�

5 -2 8
3 B5(−6)− 1

3 B5(−4) + 5
2 π log 3 + 10 Ti2

�
1
3

�
− 10 G

5 -1 − 110
27 G + 10

3 log
�
2−

√
3
�

θ + 1
48 π2 + 5 log

�
1+
√

5
2

�
− 5

2

√
3 arctan

�
1√
15

�

+ 10
3 Cl2

�
1
3 θ + 1

3 π
�
− 10

3 Cl2
�

1
3 θ − 1

6 π
�

− 10
9 Cl2

�
θ + 1

6 π
�
− 20

9 Cl2
�
θ + 4

3 π
�

+ 10
9 Cl2

�
θ + 5

3 π
�

+ 20
9 Cl2

�
θ + 11

6 π
�

5 1 − 77
81 G + 7

9 log
�
2−

√
3
�

θ + 1
360 π2 + 1

6

√
5 + 10

3 log
�

1+
√

5
2

�
− 4

3

√
3 arctan

�
1√
15

�

+ 7
9 Cl2

�
1
3 θ + 1

3 π
�
− 7

9 Cl2
�

1
3 θ − 1

6 π
�

− 7
27 Cl2

�
θ + 1

6 π
�
− 14

27 Cl2
�
θ + 4

3 π
�

+ 7
27 Cl2

�
θ + 5

3 π
�

+ 14
27 Cl2

�
θ + 11

6 π
�



56 

Recent Evaluations of Box Integrals, 
Continued 

n s ∆n(s)
2 -5 4

3 + 8
9

√
2

2 -1 4
3 −

4
3

√
2 + 4 log(1 +

√
2)

2 1 2
15 + 1

15

√
2 + 1

3 log(1 +
√

2)
3 -7 4

5 −
16
√

2
15 + 2

√
3

5 + π
15

3 –2 2π − 12 G + 12 Ti2
�
3− 2

√
2
�

+ 6π log
�
1 +

√
2
�

+ 2 log 2− 5
2 log 3− 8

√
2 arctan

�
1√
2

�

3 -1 2
5 −

2
3π + 2

5

√
2− 4

5

√
3 + 2 log

�
1 +

√
2
�

+ 12 log
�

1+
√

3√
2

�
− 4 log

�
2 +

√
3
�

3 1 − 118
21 −

2
3 π + 34

21

√
2− 4

7

√
3 + 2 log

�
1 +

√
2
�

+ 8 log
�

1+
√

3√
2

�

3 3 − 1
105 −

2
105 π + 73

840

√
2 + 1

35

√
3 + 3

56 log
�
1 +

√
2
�

+ 13
35 log

�
1+
√

3√
2

�



57 

Recent Evaluations of Box Integrals, 
Continued 

n s ∆n(s)
4 -3 − 128

15 + 1
63 π − 8 log

�
1 +

√
2
�
− 32 log

�
1 +

√
3
�

+ 16 log (2) + 20 log (3)
− 8

5

√
2 + 32

5

√
3− 32

√
2 arctan

�
1√
8

�
− 96 Ti2

�
3− 2

√
2
�

+ 32 G

4 1 − 23
135 −

16
315 π − 52

105 log (2) + 197
420 log (3) + 73

630

√
2 + 8

105

√
3

+ 1
14 log

�
1 +

√
2
�

+ 104
105 log

�
1 +

√
3
�
− 68

105

√
2 arctan

�
1√
8

�
− 4

15 G + 4
5 Ti2

�
3− 2

√
2
�

5 -3 − 12304
63 − 512

21

√
2 + 576

7

√
3 + 800

21

√
5− 320

3 B2 (3) + 448
3 B2 (5)

−320 B3 (1) + 960 B3 (3)− 1792
3 B3 (5)− 160 B4 (−1) + 4400

3 B4 (1)− 20720
9 B4 (3)

+896B4 (5) + 32 B5 (−3) + 800
3 B5 (−1)− 1488 B5 (1) + 14336

9 B5 (3)− 448 B5 (5)

5 1 − 1279
567 G− 4

189 π + 4
315 π2 − 449

3465 + 3239
62370

√
2 + 568

3465

√
3− 380

6237

√
5

+ 295
252 log (3) + 1

54 log
�
1 +

√
2
�

+ 20
63 log

�
2 +

√
3
�

+ 64
189 log

�
1+
√

5
2

�

− 73
63

√
2 arctan

�
1√
8

�
− 8

21

√
3 arctan

�
1√
15

�
+ 104

63 log
�
2−

√
3
�
θ

+ 5
7 Ti2

�
3− 2

√
2
�

+ 104
63 Cl2

�
1
3 θ + 1

3 π
�
− 104

63 Cl2
�

1
3 θ − 1

6 π
�

− 104
189 Cl2

�
θ + 1

6 π
�
− 208

189 Cl2
�
θ + 4

3 π
�

+ 104
189 Cl2

�
θ + 5

3 π
�

+ 208
189 Cl2

�
θ + 11

6 π
�



58 

Random Walk Integrals 

The following integrals arise in the context of recent studies in random walks: 

For example, W1 = 1 and W2 = 4/π.  one can write (after some manipulation) 

Wn =
� 1

0

� 1

0
· · ·

� 1

0

�����

n�

k=1

e2πxk i

����� dx1dx2 · · · dxn

Using tanh-sinh quadrature (after splitting up the domain into 9 parts to avoid 
internal singularities), one obtains (to 175 digits): 

W3 = 2
� 1

0

� 1

0

�
9− 4(sin2 (πx) + sin2 (πy) + sin2 (π(x− y))) dx dy

W3 ≈ 1.574597237551893657494692183076519690221666180758519170193693098301831180594454382
13108531336224195306498422361155408820561730126110810313314994381434429751157821008

Dirk Nuyen observes that this value matches the real part of the Mathematica 
expression HypergeometricPFQ[{1/2, -1/2, -1/2}, {1, 1}, 4].  This can be written 

A proof seems close. 

W3
?=

3
16

21/3

π4
Γ6

�
1
3

�
+

27
4

22/3

π4
Γ6

�
2
3

�



59 

Cautionary Example 

These constants agree to 42 decimal digit accuracy, but are NOT equal: 

Richard Crandall has now shown that this integral is merely the first term of 
a very rapidly convergent series that converges to π/8: 

1.  D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,” 
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 . 

 2.  R. E. Crandall, “Theory of ROOF Walks, 2007, available at http://people.reed.edu/~crandall/papers/
ROOF.pdf. 

� ∞

0
cos(2x)

∞�

n=1

cos(x/n) dx =

0.392699081698724154807830422909937860524645434187231595926
π

8
=

0.392699081698724154807830422909937860524646174921888227621

π

8
=

∞�

m=0

� ∞

0
cos[2(2m + 1)x]

∞�

n=1

cos(x/n) dx



60 

Summary 

  Numerous state-of-the-art large-scale scientific calculations now require 
numerical precision beyond conventional 64-bit floating-point arithmetic. 

  The emerging “experimental” methodology in mathematics and 
mathematical physics often requires hundreds or even thousands of 
digits of precision. 

  Double-double, quad-double and arbitrary precision software libraries are 
now widely available (and in most cases are free).  High-precision 
arithmetic is also integrated into Mathematica and Maple. 

  High-precision evaluation of integrals, followed by constant-recognition 
techniques, has been a particularly fruitful area of recent research, with 
many new results in pure math and mathematical physics. 

  There is a critical need to develop faster techniques for high-precision 
numerical integration in multiple dimensions. 


